CWE-805: Buffer Access with Incorrect Length Value

Export to Word

Description

The product uses a sequential operation to read or write a buffer, but it uses an incorrect length value that causes it to access memory that is outside of the bounds of the buffer.

Extended Description

When the length value exceeds the size of the destination, a buffer overflow could occur.


ThreatScore

Threat Mapped score: 1.5

Industry: Finiancial

Threat priority: P4 - Informational (Low)


Observed Examples (CVEs)

Related Attack Patterns (CAPEC)


Attack TTPs

N/A

Modes of Introduction

Phase Note
Implementation N/A

Common Consequences

Potential Mitigations

Applicable Platforms


Demonstrative Examples

Intro: This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer.

Body: This function allocates a buffer of 64 bytes to store the hostname under the assumption that the maximum length value of hostname is 64 bytes, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then the function may overwrite sensitive data or even relinquish control flow to the attacker.

void host_lookup(char *user_supplied_addr){ struct hostent *hp; in_addr_t *addr; char hostname[64]; in_addr_t inet_addr(const char *cp); /*routine that ensures user_supplied_addr is in the right format for conversion */ validate_addr_form(user_supplied_addr); addr = inet_addr(user_supplied_addr); hp = gethostbyaddr( addr, sizeof(struct in_addr), AF_INET); strcpy(hostname, hp->h_name); }

Intro: In the following example, it is possible to request that memcpy move a much larger segment of memory than assumed:

Body: If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely available to the destination buffer (CWE-787, CWE-788).

int returnChunkSize(void *) { /* if chunk info is valid, return the size of usable memory, * else, return -1 to indicate an error */ ... } int main() { ... memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1)); ... }

Intro: In the following example, the source character string is copied to the dest character string using the method strncpy.

Body: However, in the call to strncpy the source character string is used within the sizeof call to determine the number of characters to copy. This will create a buffer overflow as the size of the source character string is greater than the dest character string. The dest character string should be used within the sizeof call to ensure that the correct number of characters are copied, as shown below.

... char source[21] = "the character string"; char dest[12]; strncpy(dest, source, sizeof(source)-1); ...

Intro: In this example, the method outputFilenameToLog outputs a filename to a log file. The method arguments include a pointer to a character string containing the file name and an integer for the number of characters in the string. The filename is copied to a buffer where the buffer size is set to a maximum size for inputs to the log file. The method then calls another method to save the contents of the buffer to the log file.

Body: However, in this case the string copy method, strncpy, mistakenly uses the length method argument to determine the number of characters to copy rather than using the size of the local character string, buf. This can lead to a buffer overflow if the number of characters contained in character string pointed to by filename is larger then the number of characters allowed for the local character string. The string copy method should use the buf character string within a sizeof call to ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as shown below.

#define LOG_INPUT_SIZE 40 // saves the file name to a log file int outputFilenameToLog(char *filename, int length) { int success; // buffer with size set to maximum size for input to log file char buf[LOG_INPUT_SIZE]; // copy filename to buffer strncpy(buf, filename, length); // save to log file success = saveToLogFile(buf); return success; }

Intro: Windows provides the MultiByteToWideChar(), WideCharToMultiByte(), UnicodeToBytes(), and BytesToUnicode() functions to convert between arbitrary multibyte (usually ANSI) character strings and Unicode (wide character) strings. The size arguments to these functions are specified in different units, (one in bytes, the other in characters) making their use prone to error.

Body: In a multibyte character string, each character occupies a varying number of bytes, and therefore the size of such strings is most easily specified as a total number of bytes. In Unicode, however, characters are always a fixed size, and string lengths are typically given by the number of characters they contain. Mistakenly specifying the wrong units in a size argument can lead to a buffer overflow.

void getUserInfo(char *username, struct _USER_INFO_2 info){ WCHAR unicodeUser[UNLEN+1]; MultiByteToWideChar(CP_ACP, 0, username, -1, unicodeUser, sizeof(unicodeUser)); NetUserGetInfo(NULL, unicodeUser, 2, (LPBYTE *)&info); }

Notes

← Back to CWE list