CWE-1284: Improper Validation of Specified Quantity in Input

Export to Word

Description

The product receives input that is expected to specify a quantity (such as size or length), but it does not validate or incorrectly validates that the quantity has the required properties.

Extended Description

Specified quantities include size, length, frequency, price, rate, number of operations, time, and others. Code may rely on specified quantities to allocate resources, perform calculations, control iteration, etc. When the quantity is not properly validated, then attackers can specify malicious quantities to cause excessive resource allocation, trigger unexpected failures, enable buffer overflows, etc.


ThreatScore

Threat Mapped score: 1.8

Industry: Finiancial

Threat priority: P4 - Informational (Low)


Observed Examples (CVEs)

Related Attack Patterns (CAPEC)

N/A


Attack TTPs

N/A

Modes of Introduction

Phase Note
Implementation N/A

Common Consequences

Potential Mitigations

Applicable Platforms


Demonstrative Examples

Intro: This example demonstrates a shopping interaction in which the user is free to specify the quantity of items to be purchased and a total is calculated.

Body: The user has no control over the price variable, however the code does not prevent a negative value from being specified for quantity. If an attacker were to provide a negative value, then the user would have their account credited instead of debited.

... public static final double price = 20.00; int quantity = currentUser.getAttribute("quantity"); double total = price * quantity; chargeUser(total); ...

Intro: This example asks the user for a height and width of an m X n game board with a maximum dimension of 100 squares.

Body: While this code checks to make sure the user cannot specify large, positive integers and consume too much memory, it does not check for negative values supplied by the user. As a result, an attacker can perform a resource consumption (CWE-400) attack against this program by specifying two, large negative values that will not overflow, resulting in a very large memory allocation (CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative values which will cause an integer overflow (CWE-190) and unexpected behavior will follow depending on how the values are treated in the remainder of the program.

... #define MAX_DIM 100 ... /* board dimensions */ int m,n, error; board_square_t *board; printf("Please specify the board height: \n"); error = scanf("%d", &m); if ( EOF == error ){ die("No integer passed: Die evil hacker!\n"); } printf("Please specify the board width: \n"); error = scanf("%d", &n); if ( EOF == error ){ die("No integer passed: Die evil hacker!\n"); } if ( m > MAX_DIM || n > MAX_DIM ) { die("Value too large: Die evil hacker!\n"); } board = (board_square_t*) malloc( m * n * sizeof(board_square_t)); ...

Notes

← Back to CWE list