CWE Detail – CWE-99
Description
The product receives input from an upstream component, but it does not restrict or incorrectly restricts the input before it is used as an identifier for a resource that may be outside the intended sphere of control.
Extended Description
A resource injection issue occurs when the following two conditions are met: An attacker can specify the identifier used to access a system resource. For example, an attacker might be able to specify part of the name of a file to be opened or a port number to be used. By specifying the resource, the attacker gains a capability that would not otherwise be permitted. For example, the program may give the attacker the ability to overwrite the specified file, run with a configuration controlled by the attacker, or transmit sensitive information to a third-party server. This may enable an attacker to access or modify otherwise protected system resources.
Threat-Mapped Scoring
Score: 3.25
Priority: P2 - Serious (High)
Observed Examples (CVEs)
• CVE-2013-4787: chain: mobile OS verifies cryptographic signature of file in an archive, but then installs a different file with the same name that is also listed in the archive.
Related Attack Patterns (CAPEC)
CAPEC-10
CAPEC-240
CAPEC-75
Modes of Introduction
• Architecture and Design: N/A
• Implementation: REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Common Consequences
• Impact: Read Application Data, Modify Application Data, Read Files or Directories, Modify Files or Directories — Notes: An attacker could gain access to or modify sensitive data or system resources. This could allow access to protected files or directories including configuration files and files containing sensitive information.
Potential Mitigations
• Implementation: Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, it can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. (Effectiveness: N/A)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• N/A
• The kind of resource the data affects indicates the kind of content that may be dangerous. For example, data containing special characters like period, slash, and backslash, are risky when used in methods that interact with the file system. (Resource injection, when it is related to file system resources, sometimes goes by the name "path manipulation.") Similarly, data that contains URLs and URIs is risky for functions that create remote connections.
Notes
• Relationship: Resource injection that involves resources stored on the filesystem goes by the name path manipulation (CWE-73).
• Maintenance: The relationship between CWE-99 and CWE-610 needs further investigation and clarification. They might be duplicates. CWE-99 "Resource Injection," as originally defined in Seven Pernicious Kingdoms taxonomy, emphasizes the "identifier used to access a system resource" such as a file name or port number, yet it explicitly states that the "resource injection" term does not apply to "path manipulation," which effectively identifies the path at which a resource can be found and could be considered to be one aspect of a resource identifier. Also, CWE-610 effectively covers any type of resource, whether that resource is at the system layer, the application layer, or the code layer.

