CWE Detail – CWE-601
Description
The web application accepts a user-controlled input that specifies a link to an external site, and uses that link in a redirect.
Extended Description
N/A
Threat-Mapped Scoring
Score: 0.0
Priority: Unclassified
Observed Examples (CVEs)
• CVE-2005-4206: URL parameter loads the URL into a frame and causes it to appear to be part of a valid page.
• CVE-2008-2951: An open redirect vulnerability in the search script in the software allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a URL as a parameter to the proper function.
• CVE-2008-2052: Open redirect vulnerability in the software allows remote attackers to redirect users to arbitrary web sites and conduct phishing attacks via a URL in the proper parameter.
• CVE-2020-11053: Chain: Go-based Oauth2 reverse proxy can send the authenticated user to another site at the end of the authentication flow. A redirect URL with HTML-encoded whitespace characters can bypass the validation (CWE-1289) to redirect to a malicious site (CWE-601)
Related Attack Patterns (CAPEC)
CAPEC-178
Modes of Introduction
• Architecture and Design: OMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
• Implementation: N/A
Common Consequences
• Impact: Bypass Protection Mechanism, Gain Privileges or Assume Identity — Notes: The user may be redirected to an untrusted page that contains malware which may then compromise the user's machine. This will expose the user to extensive risk and the user's interaction with the web server may also be compromised if the malware conducts keylogging or other attacks that steal credentials, personally identifiable information (PII), or other important data.
• Impact: Bypass Protection Mechanism, Gain Privileges or Assume Identity, Other — Notes: By modifying the URL value to a malicious site, an attacker may successfully launch a phishing scam. The user may be subjected to phishing attacks by being redirected to an untrusted page. The phishing attack may point to an attacker controlled web page that appears to be a trusted web site. The phishers may then steal the user's credentials and then use these credentials to access the legitimate web site. Because the server name in the modified link is identical to the original site, phishing attempts have a more trustworthy appearance.
Potential Mitigations
• Implementation: Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Use a list of approved URLs or domains to be used for redirection. (Effectiveness: N/A)
• Architecture and Design: Use an intermediate disclaimer page that provides the user with a clear warning that they are leaving the current site. Implement a long timeout before the redirect occurs, or force the user to click on the link. Be careful to avoid XSS problems (CWE-79) when generating the disclaimer page. (Effectiveness: N/A)
• Architecture and Design: When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs. For example, ID 1 could map to "/login.asp" and ID 2 could map to "http://www.example.com/". Features such as the ESAPI AccessReferenceMap [REF-45] provide this capability. (Effectiveness: N/A)
• Architecture and Design: Ensure that no externally-supplied requests are honored by requiring that all redirect requests include a unique nonce generated by the application [REF-483]. Be sure that the nonce is not predictable (CWE-330). (Effectiveness: N/A)
• Architecture and Design: Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Many open redirect problems occur because the programmer assumed that certain inputs could not be modified, such as cookies and hidden form fields. (Effectiveness: N/A)
• Operation: Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth. (Effectiveness: Moderate)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• The problem with the above code is that an attacker could use this page as part of a phishing scam by redirecting users to a malicious site. For example, assume the above code is in the file example.php. An attacker could supply a user with the following link:
• The problem with this Java servlet code is that an attacker could use the RedirectServlet as part of an e-mail phishing scam to redirect users to a malicious site. An attacker could send an HTML formatted e-mail directing the user to log into their account by including in the e-mail the following link:
Notes
• Other: Whether this issue poses a vulnerability will be subject to the intended behavior of the application. For example, a search engine might intentionally provide redirects to arbitrary URLs.

