CWE Detail – CWE-1422
Description
A processor event or prediction may allow incorrect or stale data to
		 be forwarded to transient operations, potentially exposing data over a
		 covert channel.
Extended Description
Software may use a variety of techniques to preserve the
			confidentiality of private data that is accessible within the current
			processor context. For example, the memory safety and type safety
			properties of some high-level programming languages help to prevent
			software written in those languages from exposing private data. As a
			second example, software sandboxes may co-locate multiple users'
			software within a single process. The processor's Instruction Set
			Architecture (ISA) may permit one user's software to access another
			user's data (because the software shares the same address space), but
			the sandbox prevents these accesses by using software techniques such
			as bounds checking. If incorrect or stale data can be forwarded (for example, from a
			cache) to transient operations, then the operations'
			microarchitectural side effects may correspond to the data. If an
			attacker can trigger these transient operations and observe their side
			effects through a covert channel, then the attacker may be able to
			infer the data. For example, an attacker process may induce transient
			execution in a victim process that causes the victim to inadvertently
			access and then expose its private data via a covert channel. In the
			software sandbox example, an attacker sandbox may induce transient
			execution in its own code, allowing it to transiently access and
			expose data in a victim sandbox that shares the same address space. Consequently, weaknesses that arise from incorrect/stale data
			forwarding might violate users' expectations of software-based memory
			safety and isolation techniques. If the data forwarding behavior is
			not properly documented by the hardware vendor, this might violate the
			software vendor's expectation of how the hardware should behave.
Threat-Mapped Scoring
Score: 0.0
Priority: Unclassified
Observed Examples (CVEs)
• CVE-2020-0551: A fault, microcode assist, or abort may allow transient
				load operations to forward malicious stale data to dependent
				operations executed by a victim, causing the victim to unintentionally
				access and potentially expose its own data over a covert channel.
• CVE-2020-8698: A fast store forwarding predictor may allow store
				operations to forward incorrect data to transient load operations,
				potentially exposing data over a covert channel.
Modes of Introduction
• Architecture and Design: This weakness can be introduced by data speculation techniques,
				or when the processor pipeline is designed to check exception
				conditions concurrently with other operations. This weakness can also
				persist after a CWE-1421 weakness has been mitigated. For example,
				suppose that a processor can forward stale data from a shared
				microarchitectural buffer to dependent transient operations, and
				furthermore suppose that the processor has been patched to flush the
				buffer on context switches. This mitigates the CWE-1421 weakness, but the
				stale-data forwarding behavior may persist as a CWE-1422 weakness unless
				this behavior is also patched.
Common Consequences
• Impact: Read Memory — Notes:
Potential Mitigations
• Architecture and Design: The hardware designer can attempt to prevent transient
				execution from causing observable discrepancies in specific covert
				channels. (Effectiveness: Limited)
• Requirements: Processor designers, system software vendors, or other
				agents may choose to restrict the ability of unprivileged software to
				access to high-resolution timers that are commonly used to monitor
				covert channels. (Effectiveness: Defense in Depth)
• Requirements: Processor designers may expose instructions or other
				architectural features that allow software to mitigate the effects of
				transient execution, but without disabling predictors. These features
				may also help to limit opportunities for data exposure. (Effectiveness: Moderate)
• Requirements: Processor designers may expose registers (for example,
				control registers or model-specific registers) that allow privileged
				and/or user software to disable specific predictors or other hardware
				features that can cause confidential data to be exposed during
				transient execution. (Effectiveness: Limited)
• Build and Compilation: Use software techniques (including the use of
				serialization instructions) that are intended to reduce the number of
				instructions that can be executed transiently after a processor event
				or misprediction. (Effectiveness: Incidental)
• Build and Compilation: Isolate sandboxes or managed runtimes in separate address
				spaces (separate processes). (Effectiveness: High)
• Build and Compilation: Include serialization instructions (for example, LFENCE)
				that prevent processor events or mis-predictions prior to the
				serialization instruction from causing transient execution after the
				serialization instruction. For some weaknesses, a serialization
				instruction can also prevent a processor event or a mis-prediction
				from occurring after the serialization instruction (for example,
				CVE-2018-3639 can allow a processor to predict that a load will not
				depend on an older store; a serialization instruction between the
				store and the load may allow the store to update memory and prevent
				the mis-prediction from happening at all). (Effectiveness: Moderate)
• Build and Compilation: Use software techniques that can mitigate the
				consequences of transient execution. For example, address masking can
				be used in some circumstances to prevent out-of-bounds transient
				reads. (Effectiveness: Limited)
• Build and Compilation: If the weakness is exposed by a single instruction (or a
				small set of instructions), then the compiler (or JIT, etc.) can be
				configured to prevent the affected instruction(s) from being
				generated, and instead generate an alternate sequence of instructions
				that is not affected by the weakness. (Effectiveness: Limited)
• Documentation: If a hardware feature can allow incorrect or stale data
				to be forwarded to transient operations, the hardware designer may opt
				to disclose this behavior in architecture documentation. This
				documentation can inform users about potential consequences and
				effective mitigations. (Effectiveness: High)
Applicable Platforms
• None (Class: Not Language-Specific, Prevalence: Undetermined)
Demonstrative Examples
• A processor with this weakness will store the value of untrusted_arg
				(which may be provided by an attacker) to the stack, which is trusted
				memory. Additionally, this store operation will save this value in
				some microarchitectural buffer, for example, the store buffer. In this code sequence, trusted_ptr is dereferenced while the attacker
				forces a page fault. The faulting load causes the processor to
				mis-speculate by forwarding untrusted_arg as the (transient) load
				result. The processor then uses untrusted_arg for the pointer
				dereference. After the fault has been handled and the load has been
				re-issued with the correct argument, secret-dependent information
				stored at the address of trusted_ptr remains in microarchitectural
				state and can be extracted by an attacker using a vulnerable code
				sequence.
• In this example, assume that the parameter idx can only be 0 or 1, and
				assume that idx_array initially contains all 0s. Observe that the
				assignment to v in line 4 will be array[0], regardless of whether
				idx=0 or idx=1. Now suppose that an attacker repeatedly invokes fn
				with idx=0 to train the store forwarding predictor to predict that the
				store in line 3 will forward the data 4096 to the load idx_array[idx]
				in line 4. Then, when the attacker invokes fn with idx=1 the predictor
				may cause idx_array[idx] to transiently produce the incorrect value
				4096, and therefore v will transiently be assigned the value
				array[4096], which otherwise would not have been accessible in line 4. Although this toy example is benign (it doesn't transmit array[4096]
				over a covert channel), an attacker may be able to use similar
				techniques to craft and train malicious code sequences to, for
				example, read data beyond a software sandbox boundary.

